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Abstract

This paper solves an 'incremental' form of the sen-

sitivity equations derived by differentiating the dis-

cretized thin-layer Navier Stokes equations with re-

spect to certain design variables of interest. The

equations are solved with a parallel, preconditioned
Generalized Minimal RESidual (GMRES) solver on

a distributed-memory architecture. The 'serial' sen-

sitivity analysis code is parsllelized by using the

Single Program Multiple Data (SPMD) program-
ruing model, domain-decomposition techniques, mad

: message-passing tools. Sensitivity derivatives are

computed for low and high Reynolds number flows
over a NACA 1406 airfoil on a 32-processor Intel

Hypercube, and found to be identical to those com-

puted on a single-processor Cray Y-MP. It is esti-
mated that the parallel sensitivity analysis code has

to be run on 40-50 processors of the Intel Hyper-

cube in order to match the single-processor process-

ing time of a Cray Y-MP.

Introduction

The development of parallel computers with a

large number of processing nodes offers tremendous

increases in computer resources for computational
scientists. Parallel computers afford the realistic

possibility of combining the knowledge of diverse
engineering disciplines to produce an integrated,

multi-disciplinary effort to solve complex problems

in engineering design.
The High Speed Civil Transport (HSCT) ob-

jectives of the High Performance Computing and
Communications (HPCC) program 1 depend heavily

on the design of methodologies for multi-dlsciplinary

analysis and design. Massively parallel implemen-
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tations of such design methodologies would be re-

quired to ensure improved computational efficiency
and tractability for large problems. The research

in this paper is chiefly motivated by this need for

the development of parallel, multi-disciplinary de-

sign techniques.
The field of Computational Fluid Dynamics

(CFD) has matured sufficiently to the point that
flow solutions provided by advanced CFD codes can

be reliably used to extract information for use in

aerospace vehicle design. A typical CFD code solves
a system of partial differential equations (PDEs)

on a discrete mesh, fo, a given, fixed, set of flow

conditions (lilre Mach number, Reynolds' number

etc.). However, practical design codes usually re-

'quire much additional information in the form of
Sensitivity Derivatives (SD), in order to produce an

optimum design.

A particular CFD code may be extended to cal-
culate aerodynamic sensitivity derivatives which are

consistent with the discrete flow solution provided

by the code. Each sensitivity derivative quantifies

the derivative of a system response (e.g. lift on an

airfoil) with respect to an independent design vari-

able (e.g. thickness of the airfoil). A large number of
sensitivity derivatives may be required to evaluate
the relative influence of all the parameters which

affect the vehicle design. Hence, it becomes criti-
cal that these sensitivity derivatives be computed

'cheaply', if CFD codes are to be incorporated into

practical multi-disciplinary design environments.

The simplest way of calculating sensitivity

derivatives is by computing the 'difference' between

the two converged CFD solutions which correspond
to two different values for the design variable of in-
terest. This method is referred to as the 'finite-

difference' method of calculating sensitivity deriva-

tives. Although simple and straightforward, this

method can become prohibitively expensive in terms

of computational cost, particularly ff the number of

design variables of interest is large.
The sensitivity derivatives car also be corn-



putedby differentiating the governing equations of
fluid flow ; the difl_erentiation can be undertaken

prior to the numerical discretization (continuum

method) or after the numerical discretization (dis-

crete method). Both of these methods are eom-

putationally efficient as compared to the 'finite-
difference' method, and have been compared by

Shubin and Frank 2. The linear system of equations

obtained by this differentiation of the governing

equations results in the Sensitivity Equations s'4's.

This research compares the 'finite-difference'
method and the discrete method for calculating sen-

sitivity derivatives on a distributed-memory ma-
chine. The sensitivity equations for the discrete ap-

proach are derived by direct differentiation of the

system of discrete non-linear algebraic equations
which model the thin-layer Navier-Stokes (TLNS)

equations for 2-D steady flow s. The sensitivity

equations represent a large system of coupled, lin-
ear, algebraic equations, which must be solved to

yield the sensitivity derivatives of interest.

The coefficient matrix corresponding to the lin-

ear system is large and sparse, and usually reflects

poor diagonal dominance. The large size of the ma-

trix rules out solution by direct matrix inversion, as

this would reqaize prohibitively large core memory

(particularly for 3-D problems). In 'standard' form,
the discrete sensitivity equations must be solved 'as

is' ; the method admits no approximations to the co-
efficient matrix. Thus, standard iterative methods

may converge very slowly, or may fail due to the

lack of diagonal dominance (or poor conditioning)
of the coefficient matrix. The 'incremental' form of

the sensitivity equations developed by Korivi et. ale

admits 'appro_/mations of convenience' to the co-

efficient matrix, and thus overcomes the problems

posed in solving the 'standard' sensitivity equations.

The 'incremental' form admits approximations

to improve the diagonal dominance of the coeffi-

cient matrix (e.g. a time-term may be added to
the main-diagonal, certain off-diagonal terms may

be neglected etc.). This implies that quasi-Newton
iterative methods (which exist in most CFD codes)
can be used to solve the discrete sensitivity equa-

tions. This also implies that parallel solvers devel-

oped for iterative solutions of large, sparse linear

systems of equations v's'°, can be applied without
modification to solve the system of sensitivity equa-

tions of interest. The existing literature pertaining

to parallel sensitivity analysis seems to be extremely

sparse. Some efforts in this direction are being made

by Das et. al1° and Olander at. a111.

The particular quasi-Newton iterative method

used in this paper is based on a preconditioned
GMRES n solver. This solver has been success-

fully parallelized and validated for the original CFD
code used in this research, in a message-passing

environment, on a distributed-memory machine Is.

A domain-decomposition strategy has been used to

partition the original problem amongst all available

processors. The parallel sensitivity analysis code

thus developed is validated on a 32-processor Intel

ttypercube.
This paper is organized into four sections. This

introduction section is followed by a discussion of

(a) the analysis code -- the governing equations,

spatialdiscretizationsand implicitformulation,(b)

sensitivityequations in 'standard'and 'incremen-

tal'form, (c) parallelcomputing issuesrelatedto

the parallelisationof Ca) and (b). This isfollowed

by computational resultsand comparisons of'finite-

difference'and discretesensitivityderivativesfor

laminar and turbulentflow cases.The finalsection

isa summary ofthe presentwork, and discussesfu-

ture work in thisarea.

Presentation of Theory

ParallelFlux-Balance Computations

The governing equations of 2-D compressible

fluidflowconsideredinthisstudy are the thin-layer

Navier-Stokesequationswrittenas

1 aQ OF 8G aG 'z= R (i)
J O_ O_ 077 + 07

The gover,/ng equations are solved computation-

ally in their integral, conservation law form in

generalized coordinates, using an implicit, upwind,
cell-centered Knife volume formulation. The invis-

cid fluxes axe discretized using Van Lear's _4 flux-

splitting scheme. The viscous fluxes are evaluated
with second-order acctt_ate central-differences. A

nine-point stencil is used for higher-order accurate
calculations of the inviscid and viscous fluxes.

In a multiple-processor system, the discreti,.ed

form of equation 1 is solved by dividing the sin-

gle, large _miprocesso, grid into a number of smaller

grids (domain-decomposition) ; each grid is then as-

signed to one individual processor. Note, that the
memory-access for each processor in a distributed-

memory environment is limited to the data resid-

ing in its local-memory only. This implies that the

parallel, multiple-processor calculations will be con-

sistent with the original uniprocessor calculations

only if information is exchanged across all grid in-



teffaceswhicharecreatedbecauseof the domain-

decomposition.
Since the computation of the residual vector R

uses a nine-point stencil, the flux-evaluation for cell-

faces which lie on (and adjacent to) domain bound-

arieswillrequireinformationfrom (a maximum of)

two adjacent cellswhich resideina neighboringpro_
cessoz. This information isstored in two layersof

'ghost'cellsat each domain boundary. Data from

the neighboring domains is'communicated' tothese

'ghost'cells,beforethe flux-evaluationroutinesare

invoked. The implementation of boundary condi-

tionsat physicalboundaries may alsorequirecom-

munication amongst processors.In particular,air-

foilcalculationson C and O-type meshes requlxe

communication between non-neighboringprocessors

in order to effectC and O-type periodicity.This

isachieved by communication amongst processors

which liealong the 'cut'of the particularC or O-

type grid. Further details regarding parallelization

of the original CFD code are contained in refer-
ence 13.

A discrete numerical steady-state solution of

equation 1 implies that

{R(Q')} = {o} (2)

where {R(Q')} is the residual vector, for the steady-

state solution {Q*}. The accuracy of {Q'} is di-

rectly affected by the accuracy of computation of the
inviscid and viscous fluxes. Equation 2 represents a

large system of coupled, algebraic, non-linear equa-
tions. An 'implidt' linearization of this non-linear

system produces a linear system which can be solved

directly by Newton's root-finding method as

IOn(Q)]
j {"AQ} = (3)OQ

{q_+l} = {Q_} + {_AQ} (4)
n = 1,2,3,...

InmostCFDapp cations,isalarge,
sparse,banded matrix, which can be very cum-

bersome to compute exactly (includingConsistent

boundary-condition linearizations,true flux jaco-

bians etc.).Even ifthe exact [°R_(q)] isavailable,
L @Q J

the core memory required to laver{thismatrix re-

stricts the practicalapplicationof exact Newton's

method to allbut moderate sized2-D problems.

Hence, in practice,a quasi-Newton method is

used to solve equation 3. An approximate matrix

[_] is constructed, by introducing lineariza-
tion errors, adding an artificial 'time-term' to the

main diagonal, and/or splitting the original opera-
tot into simpler operators. The resulting 'approxi-

mate' system of equations is

= {R"(Q)} (s)
l oq J

This approximate linear system is then solved iter-

atively for '_AQ, followed by a solution update in

equation 4. The tzadeoff in using an approximate

operator is the reduced error-reduction per time-

step as compared to the exact Newton's method.
Note, that no approximation is made in computing

{R"(Q)} at each time-step, and that the system is
solved in 'delta' or 'incremental' form. The 'delta'

formulation ensures that the steady-state solutions

obtained from the quasi-Newton method and the
exact Newton method will be identical.

In the parallel code, the calculation of inviscid
and viscous fluxes is followed by 'assembly' of the

implicit coefficient matrix. The coefficient matrix
is 'assembled, from linear combinations of the in-

dividual flux-jacobian matrices for each cell. Each

domain computes its flux-jacobian matrices, and no
extra communication is required to assemble the fi-

nal coe_cient matrix. This is because a five-point

stencil is used to compute the implicit operator,

Which provides a sparse, banded, coefficient matrix

with five block-diagonals.
Thus, each processor (or domain) calculates its

own implidt matrix and residual vector, and the

original, large, system of linear equations corre-

sponding to the unlprocessor domain is transformed
to a series of smaller linear systems, with one linear

system for each processor. In this paper, a precon-
ditioned GMRES solver is used to iteratively solve

each linear system of equations for each domain.

Computationally, the GMRES algorithm involves

basic linear algebra kernels, namely, inner-products

of vectors, sazpy opecations and matrix-vector prod-
acts. These kernels must be parallelized in order to

obtain a parallel version of the GMRES solver. The

parallel GMRES solver used in this paper has been
validated to have the exact convergence rate of the

serial GMRES solver is.

If the implicit coefilcient matrix provided to the

GMRES solver lacks diagonal dominance (as is the

case with the sensitivity equations), the solver con-

verges very slowly to the solution of the correspond-

ing linear system. The convergence rate of the solver
can be improved by preconditioning the linear sys-

tem. Preconditioning can greatly reduce the over-

all computational etfort required to solve the linear

system. The Lower-Upper Symmetric Gauss-Seidel



(LUSGS)schemeof Yoon and Jameson is is modi-
fied into a pointwise-implicit block-solver, for use as

a 'local' preconditioner in this work. This pzecondi-

tioner is applied individually to the linear system in

each domain, and is found to be superior to the con-

ventional pzeconditioners based on incomplete fac-
torizations of the coefficient matrix is.

Aerodynamic Sensitivity Equations

In general, the jth aerodynamic system re-

sponse, Ci is dependent on the vector of indepen-
dent variables {Q* }, the vector of grid coordinates

{._}, and the vectorof design variables, _}. This
can be written as

vj = cjCQ'($), (6)

The sensitivity equations for any particular system

response, Ci, can be obtained from equation 6 as

 -Ej = t -Kj (7)

+to,}

Equation 7 represents the total rate of change of Ci

with respect to 3k.

The large system of non-linear equations which
model the fluid flow (equation 2) can be generalized

in the above vein and rewritten as

{R(Q'($), Z)} = {0}

which signifies the total change in the vector of field
variables for a particular design variable, 3k. The

oR
matrix [o-'2] is the 3acobian of the flow equations
(evaluated at steady-state) with respect to the grid

coordinates ; { a;¢ _ is the grid-sensitivity vector andd3L J
is computed by the method of Taylor et. als. The

OR
vector { _ } accounts for the explicit dependencies

(if any) of the flow equations (including boundary

conditions) on _.
Solutions for the 'standard' form sensitivity

equations requke a direct inversion of [_] or it-
oR

erations with (a possibly poorly conditioned) [_-_]

as the coefficient matrix (similar to solving equa-

tion 3). The standard form sensitivity equations
are rewritten in 'incremental' form as

The differentiation of equation 8 with respect to 3k

yields

[ORl d 
+ lg l ld-E } +

} = L J (lo)

where

= + { ad--_k _ (11)l_J t a_ J

d3 , J = t J
(12)

The vector { _ } represents the ruth iteration on

the total derivative { _ }, and must be driven to

(8) zero to find the solution {-_ } of equation 9. Note,
that no approximations are allowed in the compu-

tartan of { _ }, in order that the converged solu-
tion yields the correct, consistent, discrete sensitiv-

ity derivative.
The solution of equation 10 does allow %ppzox-

(9) imations of conve...nieuce' for the left-hand-side coal-
foal ficient matrix [oQP°-E]"In practice, the approximations
---- = {0} • • •
t J are introduced by using a f_st-order discret_zatlon

for the coefficient matrix, adding a pseudo _time-

This equation represents the_ so-c_ed 'StandarcP _ te_-m' to the main-diagonal and neglecting consis-
form of the sensitivity equations. The equation = tent llneafisation for 'C' and '0' type boundary-

is solved for the vector of sensitivity derivatives conditions. The major advantage of solving the 'in-
{_--q: 1 for each desirn variable of interest, fl_. cremental' form of the sensitivity equations over the

#_l, J' '_7- ......
This method of computing sensltlvltydenvatlves is standard form is that any linear-system solver that

known as the Quasi-Analyt_ical Method. _ used in t he analysis code to solve equation 5 can

The matrix [_-_]0Ris the Jacobian.... of the non-

linear equations (evaluated at steady-state including

consistently linearised boundary conditions) with

respect to the field variables. The discrete sensitiv-
ity derivatives are represented by the vector { _ },

be used without mo_cation to solve the system

of sensitivity equations in equation 10. This is be-

cause the characteristics (i.e. sparsity pattern and

diagonal dominance) of the coefficient matrices in

equation 5 and equation 10 are very similar to each



other.The solution of the 'incremental' form sen-

sitivity equations, as derived by Korivi et. ale, has

been parallelized in this work, and will now be de-

scribed.

Parallel Solution of Sensitivity Equations

The computational work involved in solving the
'incremental' sensitivity equations can be divided

into two parts :

(i) Calculate { _ ) from equation 12. Note that

JaR] is computed in parallel (fromthe matrix L_-_Q
the steady-state values of the vector Q*), and
re-used at each iteration. The matrix-vector

product, [o_] { _ } is the only vector whichtd
needs to be recomputed at each iteration. This

matrix-vector multiply needs to be parallelized

across all the available processors. Note, that

the exact jacobian matrix [4] has more non-

zeroes than the approximate matrix [_]" This

implies that parallel matrix-vector mtiltiplica-
tion with the exact jacobian matrix will require

more operations than with the approximate

• jacobian matrix. The matrix-vector product
oR] faX _ and the vector _oR'} remain con-

stant tKrough the iterative process. Both these

vectors are computed in parallel, and stored be-

fore the iterative process begins.

Each matrix-vector multiplication is preceded by

inter-processor communication. This communica-

tion is designed to provide each processor with up_

datedvalnesof fromtheneighbo gpro-
cessors. This ensures that the 'parallel' matrix-

vector product is identical to the 'serial' matrix-

vector product.

(ii) Solve the linear system of equation 10 by an it-
erative method. As discussed earlier, the major

motivation for developing the 'incremental' sen-

sltivity equations is to use existing CFD solvers

(e.g. spatially-split approximate factorization,

K_ylov solvers like GMRES etc.) to solve the

linear system of equations in equation 10. This

paper uses a preconditioned GMRES solver to
solve this linear system. This parallel solver has

been validated for solving the linear system in

equation 5, and is an integral part of the ex-

isting CFD code is. In this work, the parallel
GMRES solver incorporates a preconditioner

derived from the approximate jacobian _matrix,

to accelerate convergence to the exact solution

vector {dd_--_}.
Recall, that the 'finite-difference' sensitivity deriva-
tives are evaluated by computing successive 'per-

turbed' CFD solutions for each design variable of

interest. For example, if C] = CL, the steely-state

lift-coefficient, and j3a = _, the angle of attack, then

-_ can be approximated by

6C_ C_ +_ - C_ -_°= (13)
da _a 2Aa

C_ +_= and C_ -zi_ are obtained by computing new
CFD solutions using the converged solution for C$
as an initial guess. In this paper, the parallel code
of reference 13 is used to obtain the 'perturbed' so-

lutions for the 'finite-difference' sensitivities, which

are subsequently compared with the 'discrete' sen-
sitivities obtained from the 'incremental' sensitivity

equations.

Test Results and Discussion

A parallel, preconditioned GMRES solver has
been developed to compute solutions of the sensi-

tivity equations derived from differentiation of the
discretized Navier-Stokes equations. The total com-

putational work corresponding to the original single-

processor domain is partitioned amongst the various

processors of the parallel, distributed-memory ma-

chine. The SPMD (Single Program Multiple Data)

model of programming is invoked as each processor

runs identical copies of the computational code, on
different sets of data.

The parallel code is developed on an Intel

Hypercube with 32 processors. The results from

the parallel sensitivity analysis code are validated

againstthe originalserialcode (which isrun on a

singleprocessorofa Cray YMP). The scalabilityof

the domain decomposition algorithm and the pre-

conditionedGMRES solveristestedby running the

parallelcode on a range ofprocessors(8,16 and 32).

The two problems selectedfor validationare low

Reynolds number subsonic flow oyez a NACA 1406

airfoil,and transonicturbulent flow over a NACA

1406 airfoil.

L_mi_ar Flow -- Subsonic Airfoil

The parallelsensitivityequation solveris first

validatedfor low Reynolds number subsonic flow

over a NACA 1406 airfoil.The flow conditionscor-

respond toa freestreamMach number of Moo = 0.6,

angle of attack,a - 1.0°, and Reynolds number,

Re - 5.0.10s.The computational gridisa 'C'mesh

of257.65 points,with pointsclusterednear the air-

foilsurfaceand the fax-fieldboundary placed five-

chords from the airfoilsurface. The lift-corrected



boundary conditions are implemented on the far-
field boundaries 17.

The parallel, preconditioned GMRES solver is
initially used to obtain a converged steady-state so-

lution, {Q*}, to the discrete non-linear flow equa-

tions (eqn. 2). The parallel validation for the GM-
RES solver is performed on 8 nodes of the Hyper-

cube with an 8.1 partitioning of the 257* 65 domain

to yield domains of size 33,65 for each process-

ing node. The computed llft, drag, and pitching
moment coefficients obtained for the steady-state

solution are CL--0.1815, CD=0.0417, and Cz_ -

-0.0237. These coefficients compare exactly with

those computed with the serial version of the code

on a Cray Y-MP.

The steady-state solution is used as an initial

guess for the 'finite-difference' method (FDM), to

compute sensitivity derivatives for Cz,, CD and CM

with respect to the angle-of-attack _, the freestream
Much Number Moo, and the Reynolds Number
Re. The forward and backward perturbations for

the 'finite-dlfference' calculations axe set to Aflk =

+5.10-e.flk (for eqn. 13). A Courant number of 25,

with (a maximum of) ten GMRES sub-iterations

per time-step, is used to generate a new steady-
state solution for each 'perturbed' condition. The

I2 norm of the global residual vector is reduced to
a value of 10 -lz to determine the converged solu-

tion for each 'perturbed' variable. A summary of

the sensitivity derivatives computed by the parallel
'finite-difference' method on 32 processors of the In-

tel Hypercube is presented in table la. The sensitiv-

ity derivatives obtained from the parallel, multiple-
domain version of the FDM axe identical to those

obtained from the serial, single-domain version of

the FDM on the Czay Y-MP.

The number of iterations to convergence (n_)

for the FDM calculations are plotted in fig. 1. The

values of nc for a and Re remain fairly constant as

the number of processors increases. However, the

calculations for Moo (Mach No.) show an increase
in rtc as the number of processors increases from one

(Czay Y-MP) through 8, 16 and 32 (Hypexcube).
This increase in nc may be attributed to an increase

in stiffness of the coefficient matrix ofeqn. 10, as the

single-domain problem is partitioned into multiple-

domain problems on the parallel machine.

The processing times for the FDM calcula-

tions on the Czay ¥-MP (1 processor) and the In-

tel Hypezcube (8, 16, 32 processors) are summa-
rized in fig. 2. The processing times shown do
not include the time required to compute the ini-

tial (unperturbed) steady-state solution. The to-
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tal time required to obtain all sensitivity derivatives

for the three design variables on 32 parallel proces-
sors is 1256 seconds, as compared to 778 seconds

on the Cray Y-MP. Thus, the 32 processor Intel

Hypezcube is 61% slower than the single-processor
Cray Y-MP when calculating sensitivity derivatives

by the FDM. Hence, it may be projected that 52

(or more) paralhl processors would be required to

match (or exceed) the single-processor performance
of the Cray Y-MP for the FDM calculations.
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The parallel, preconditioned GMRES solver de-
veloped for the original CFD code (and used to

solve eqn. 5) is applied in the sensitivity analysis
code to solve the 'incremental' sensitivity equations

(eqn. 10). The steady-state solution, {Q*}, is used



in equation 8 to compute the right-hand-side vector

{_-_= } for equation 9. The sensitivity derivatives
.aP_ . , _ •

obtained from solwng the 'incremental equations

by the Quasi-Analytical Method (QAM) on the pax-
alld machine axe summarized in table lb. The val-

ues of the sensitivity derivatives in tables la and

lb axe identical to five decimal places. This vali-

dates the accuracy of the parallel Quasi-Analytical

Method for providing highly accurate sensitivity
derivatives from solutions of the 'incremental' sen-

sitivity equations (eqn. 10).
The system of sensitivity equations is dedaxed

solved when the I2 norm of the residual vector

{_-_} is reduced to 10 -e. A Courant number of
25, with (a maximum of) ten GMRES sub-iterations
axe used to solve the linear system at each itera-

tion. The variation in the number of iterations to

convergence with the number of processors is plot-

ted in fig. 3. As expected, the values of nc for the

three design variables remain fairly constant as the

number of processors increases. This demonstrates
the scalability of the preconditioned GMRES solver

when applied as a linear-system solver fox solving

the sensitivity equations by the QAM.
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A comparison of the processing times over vaz-

ions processors for the quasi-analytical method is

presented in fig. 4. The total time xequi_ed on 32

processors to obtain all sensitivity derivatives for all
three design variables is 944 seconds, as compared
to 667 seconds on the Cray Y-MP. Thus, a complete

calculation of sensitivity derivatives by the QAM on

32 processors of the Intel Hypezcube requires 42%

more processing time than a single processor Cray
Y-MP. Assuming a linear speedup for the parallel

QAM, 45 (or more) parallel processors would be

required to match (or exceed) the single-processor

performance of the Cray Y-MP.
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A head-to-head comparisons of the paralld

FDM and the paxalld QAM reveals that the QAM

on 32 processors (944 secs.) is 25% faster than the
FDM on 32 processors (1256 secs.). As the problem

size increases (for denser 2-D grids and 3-D grids)

and the computational work per processor increases,

the advantage of the QAM will further increase with

respect to the FDM. This is because an increase in
workload will cause a more significant increase in

the 'computation to communication ratio' fox the

QAM than the FDM.

Turbulent Flow --Transonic Airfoil

This second test case demonstrates the com-

putation of sensitivity derivatives for transonic tur-
bulent flow over a NACA 1406 airfoil. The flow

conditions correspond to Moo = 0.8, a = 1.0 °, and
Re-5.0,10 s. A 'C' mesh with 257*65 points is used,

with the fax-field placed five chord-lengths from the
airfoil surface. The clustering near the airfoil surface

is much tighter than the previous (laminar) grid,
in order to account for the higher Reynolds num-
ber of the flow. The laminar viscosity is computed

by Sutherland's temperature law, and the turbulent

viscosity is modeled by the algebraic model of Bald-
win and Lomax ts.

A steady-state solution, {Q* }, is first obtained

with the preconditioned GMRES solver on 32 pro-

cessors of the Intel Rypercube. The computed

lift, drag and pitching moment coefficients are



CL:0.4166, CD--0.7750 E-2, and CM = --0.4563
E-1. All three coet_icients compare identically with

those computed by the serial code on a Cray Y-MP.
This validates the accuracy of the parallel Baldwin

Lomax turbulence model for this test case.

The sensitivity derivatives of CL, CD and CM

with respect to a, Moo and Re are first calculated by

the 'finite-difference' method (FDM). The GMRES
solver is used to obtain the 'perturbed' steady-state

solutions from the unperturbed solution, {Q* }. The

tlme-integration parameters for this test case are
identical to those used in the subsonic test case. The

sensitivity derivatives obtained by the FDM on 32

processors of the parallel machine are summarized in
table 2a. All the sensitivity derivatives are identical

to the values obtained by serial calculations with

the FDM on a single-processor Cray Y-MP.

The convergence rate of the preconditioned
GMRES solver is unaffected by the number of pro-

cessors used in the FDM calculations. This is clearly

evident from the plots in fig. 5. The scalability of

the parallel GMRES solver as used in the FDM is
thus validated for 32 processors. The processing
time characteristics for the three design variables are

shown in fig. 6. The total time is dominated by the

Moo calculation, which is consistent with the results
for the subsonic test case. The 32 processor parallel

calculations (2792 secs.) are 55% slower than the

equivalent single-processor Cray Y-MP calculations

(1802 secs.), which implies that 50 (or more) parallel

processors would match (or exceed) the Czay Y-MP

performance. These projections are very similar to
those made for the subsonic FDM calculations.
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The 'incremental' sensitivity equations for this

test case are solved by using the parallel precon-
ditioned GMRES solver with a Courant number of

25. The sensitivity derivatives computed with 32

processors are listed in table 2b. These sensitiv-

ity derivatives compate exactly with the sensitiv-
ity derivatives obtained from serial calculations with

the QAM. However, they do exhibit some discrep-
ancies when compared with the parallel FDM calcu-
lations. This is because the variation of laminar and

turbulent viscosities with respect to the field vari-

ables, {Q*}, and the computational grid, {)_}, is

neglected in the numerical construction of the vec-
tor _ dR___T__ of equation 9. Hence, for turbulent flow
cases,_l_e"incremental' sensitivity equations cannot

provide the exact sensitivity derivatives ; the 'finite-
di_erence'derivatives ate more accurate in this case.

This is true regardless of whether the sensitivity

equations are solved on the serial or parallel ma-
chines.

The variation in the number of iterations with

the number of processor s for the QAM is plotted

in fig. 7. It is clear that the number of iterations

to convergence remains constant for any number of

processors. This is an important result as it helps

establish the scalability of the preconditioned GM-

RES solver for parallel sensitivity derivativecalcula-

tions with the QAM.

The processing times for the three design vari-

ables are plotted in fig. 8. The sensitivity deriva-
tivecalcuiations for Re require the maximum pro-

ceasing time, which is consistent with the results for

the subsonic test case. The parallel calculations on

32 processors (2140 secs.) are 39% slower than the
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serial Czay Y-MP calculations (1540 sacs.). This re-

sult compares excellently with the processing time

characteristics for the subsonic test case.
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A comparison of the parallel FDM and paral-

lel QAM calculations reveals that the latter (2140

secs.) is 24% faster than the former (2792 sacs.).
This observation is identical to that made fox the

subsonic test case, and reinforces the fact that

the parallel preconditioned GMRES solver performs

uniformly for sensitivity derivativecalculations for
subsonic and transonic flow conditions.

Conclusions and Future Work

An implicit,scalable,parallellinear-system

solver,with a convergence rateindependent of the

number of parallel processors, is successfully de-

signed and tested for obtaining sensitivity deriva-
tives of the Navler-Stokes equations on a distributed

memory parallel machine. "]?he solver is based on a

qocally' preconditioned GMRES algorithm and is
constructed with a general domain-decomposition

strategy in an SPMD programming framework.
All tests conducted on a 32 processor Intel Hy-

percube indicate that the parallel GMRES solver

provides consistent and accurate sensitivity deriva-
tives for both low Reynolds number (laminar) and

high Reynolds number (turbulent) flows. The ac-

curacy of the computed sensitivity derivatives is

found to be independent of the number of proces-

sors, for both flow conditions tested in this paper.
The finite-difference method of calculating sensitiv-

ity derivatives is found to be more accurate than
the quasi-analytical method, particularly for high

Reynolds number (turbulent) flows. The quasi-

analytical method of calculating sensitivity deriva-
tives is 25% mote efficient than the finite-difference

method, in terms of processing time. The parallel

processing times for both the low and high Reynolds
number test cases indicate that 40-50 parallel pro-

cessors of an Intel Hypercube would match the per-

formance of a Cray Y-ME The parallel, precondi-

tioned GMRES solver exhibits similar processing
time characteristics and scalability when calculat-

ing sensitivity derivatives for both the laminar and
turbulent flow cases.

In future work, the procedure for obtaining sen-

sitivity derivatives developed in this paper will be
tested on larger parallel machines. This will be

done to further study the scalability of the code,
and the effectiveness of the parallel solver on large

numbers of processors. The sensitivity analysis code

will also be ported to a 'cluster' of workstations, in

order to study its performance characteristics in a

loosely coupled parallel environment. The reusabil-

ity of obtaining sensitivity derivatives in a paral-
lel environment by automatic differentiation of the

Navier-Stokes equations with a softwarepackage llke

ADIFOR 19, will also be investigated.
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Table la. Subsonic Airfoil ; Finite-Difference Method

_k I dCL/a_k ac_/a_k
a 6.1218E+0 9.1815E-2 -3.1690E-2

M¢0 5.4302E-3 1.6279E-2 -4.7328E-3
Re 5.9580E-6 -4.9120E-6 -6.5630E-7

Table lb. Subsonic Airfoil ; Quasi-kualytical Method

Bk ! dCLla#k aCula#k dC.lag_.
a I 6.1218E+0 I 9.1813E-2 -3.1675E-2

Mc¢ 5.4248E-3 1.6279E-2 -4.7296E-3
Re 5.9577E-6 -4.9123E-6 -6.5637E-7

Table 2a. Transonic Airfoil ; Finite-Di_erence Method

_k dCL/d[3k dCM /d_k dCD /d_k

a 1.2976E+ 1 4.3337E- 1 - 6.2317E- 1

M= 2.0293E+I 1.9710E-I I -5.9554E-1

Re -1.1112E-9 -2.8051E-10 1.4250E-10

Table 2b. Transonic Airfoil ; Quasi-Analytical Method

Zk dCLIdPk* dCMId_ * dCDlazy*
a 1.1981E+1 4.1926E-1 -4.6152E-1

M= 1.7419E+0 1.9215E-1 -5.3973E-1
Re -6.4846E-9 -7.3551E-10 I 1.3584-9
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